COURSE CODE	GIE- 419
COURSE NAME	SPATIAL DECISION SUPPORT SYSTEM
CREDIT HOURS	Theory: 02
	Practical: 01
	Total: 03
CONTACT HOURS	Theory: 32
	Practical: 48
	Total: 80
PREREQUISITE	GIE-409

MODE OF TEACHING:

Instruction:	Two hours of lecture per week	67%
Practical:	Three hours of Lab work per week	33%

COURSE DESCRIPTION:

Decision analysis is a set of systematic procedures for analyzing complex decision problems. It has its importance in geographical information science. Many real-world spatial planning and management problems give rise to the use of spatial decision support systems where it often becomes difficult to choose the most appropriate decision in the presence of several alternatives.

COURSE OBJECTIVES:

This course is mainly designed to convey the basics of SDSS and its use in different application areas. This course provides an introduction to spatial decision support systems including multi-criteria decision analysis techniques. The course covers topics such as DSS, SDSS, Components of SDSS, SDSS Application and Challenges and Multi-criteria techniques.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

1 Engineering Knowledge:

7 Environment and

				Sustainability:	
2	Problem Analysis:		8	Ethics:	
3	Design/Development of Solutions:	\checkmark	9	Individual and Team Work:	
4	Investigation:		10	Communication:	
5	Modern Tool Usage:		11	Project Management:	
6	The Engineer and Society:	\checkmark	12	Lifelong Learning:	

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student will demonstrate competency by being able to:

No.	CLO	Domain	Taxono my Level	PLO
1	Demonstrate advanced level concepts of spatial decision support systems for improved decision making of societal problems.	Cognitive	3	6
2	Develop SDSS applications in Python Programming Language	Cognitive	4	3

TOPICS COVERED:

Theory:

Weeks	Topics
1	Introduction to Decision Support System (DSS)
2	The systems perspective of a DSS
3	SDSS Introduction
4	Evolution and Trends in SDSS
5-6	Components of SDSS I

7	Components of SDSS II
8	Building SDSS Software
9	Building Desktop and Web-based SDSS
10	SDSS Modelling
11-12	SDSS Applications
	Multi-criteria Decision Analysis, Spatial multi criteria decision analysis,
	Evaluation Criteria, Hierarchical structure of evaluation criteria, Criterion
13	maps, Scale of measurement, Deriving commensurate criterions maps,
	Linear scale transformation, Value utility function, Probabilities, and fuzzy
	sets
	SDSS Applications, Decision alternative and constraints, Criterion
14	Weighting, Ranking methods, Rating methods, pairwise comparison method,
	Trade-off analysis method, Decision Rules,
	Multi attributes decision rules, Simple additive weighting methods, Analytical
15	hierarchy process. Multi criteria decision support systems, Spatial data
	processing systems, Spatial expert systems
16	SDSS Challenges and Future Directions
17-18	ESE

Practical:

No.	Topics
1.	Case Study on Super Market- An example of Decision Support System
2.	Identification of Entities and Attributes for SDSS on Given Scenario's
3.	Exploration of existing SDSS in preparation for group term projects
4.	Hands on exercise on Python
5.	Hands-on exercise on River Width Calculator- An SDSS
6.	Hands-on exercise on Forest Change Detector- An SDSS
7.	Basics of Python (For ArcGIS 10)
8.	Basics of Python (For ArcGIS 10)

9.	Python for Everyone
10.	Python Toolbox and PyOT
11.	Accessing the Feature Classes in Python
12.	A practical example of Web SDSS

Books:

- **Textbook:** 1. Spatial Decision Support Systems: Principles and Practices, RamanathanSugumaran, 2011. ISBN: 978-1-4200-6212-0
- Reference GIS and Multicriteria Decision Analysis, Jacek Malczewski, 1999,Books: ISBN:0-471-32944-4
 - Decision Support Systems for Business Intelligence, 2nd Edition, Vicki
 L. Sauter, 2011, ISBN: 978-0-470-43374-4
 - Decision Support Systems in the 21st century, George M. Marakas, 2004, Prentice Hall, India.

ASSESMENT SYSTEM:

1. CLOs Assessment

Cognitive	Psychomotor	Affective
Spreadsheet	-	-

2. Relative Grading

Theoretical / Instruction		67%
	Assignments 10%	
	Quizzes 10%	
	Mid Exams 30%	
	End Semester Exam 50%	
Practical Work		33%

Laboratory Work		70%	
	Laboratory Assignment70%		
	Semester Project30%		
Viva/Quiz		30%	
Total			100%